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ABSTRACT

Deep neural networks have been shown to be vulnerable to
adversarial attacks, an intended but almost invisible manipu-
lation to testing samples. The question of whether this vulner-
ability is the same to different types of deep models has not
been well addressed. Complementary to existing researches
on supervised models, this work studies the robustness of an-
other important type of deep model, semi-supervised learn-
ing models, against adversarial attacks. We also propose a
new iterative adversarial learning algorithm to further boost
adversarial attack success rate and thus to help investigate
the mechanism of adversarial attack. Experimental results
demonstrate the superior performance of our approach over
the state-of-the-art approaches.

Index Terms— Semi-Supervised Learning, Adversarial
Attack, Deep Neural Networks.

1. INTRODUCTION

Deep neural networks (DNNs) have achieved great success
in many research areas, such as computer vision, natural
language and recommended system. However, recent works
show that deep neural networks are extremely vulnerable to
adversarial attacks [1, 2]. Adversarial attacks can be imple-
mented by adding small but human-imperceptible noises to
the test data examples and cause the accuracy of the test data
to drop to an unacceptable level. This vulnerability of DNNs
becomes a major threat to real-world deployments. On the
other side, a deep model retrained by its adversarial exam-
ples has been proved to be more robust to adversarial attacks
[3, 4]. Therefore, effective adversarial example generation
algorithms are useful to study the vulnerability and to remedy
the defects of DNNs models.

Existing studies on the vulnurability of DNNs mainly con-
centrate on supervised learning models [5, 6, 7]. The robust-
ness of other types of DNNs, say semi-supervised learning
(SSL) deep models [8, 9, 10], against adversarial learning has
not been exploited yet. In this paper, we devote to studying
the properties of semi-supervised deep models against differ-
ent levels of adversarial attacks and developing a more ef-
fective attacking algorithm. We found that the responses of
semi-supervised models are different from that of supervised

models. More specifically, under strong level attacks, semi-
supervised models tend to be more robust when using less
labeled samples to train. This is significantly different from
supervised learning, for which more training data lead to a
more robust model [11]. In addition, we propose a new ad-
versarial attack algorithm to enhance attacking success rate,
which would be beneficial for developing more advanced de-
fense strategies.

In summary, our contributions are as follows:

• We evaluate recent semi-supervised deep models against
adversarial attacks and found different properties from
supervised learning reported in existing works.

• We propose a new adversarial attack algorithm which
achieves higher attacking success rate for both super-
vised and semi-supervised deep model.

• We construct a unifying software package to evalu-
ate different attacking algorithms on different semi-
supervised learning algorithms, and conduct extensive
experiments using the package to validate our method-
ology.

2. METHODOLOGY

In this section, we first introduce the approach to evaluate the
robustness of semi-supervised deep models under adversarial
attack. Then, we present our new iterative attacking algo-
rithm.

2.1. Attack semi-supervised model using FGSM

Suppose there is a target classifier f : X ⊂ Rd −→ Y , which
correctly classifies a sample x ∈ X to its true class y ∈ Y
after training, i.e. f(x) = y. Y is the ground truth label
set of X and its elements are from {1, 2, ..., C}. The aim of
an adversarial attack is to manipulate the sample x slightly
(i.e., by adding a small but customized perturbation to x) to
produce x∗ so that f(x∗) 6= y. Here f(x∗) could be other
class numbers. In this case, the classifier is misled by the
adversarial sample x∗. Usually a norm constraint ‖x − x∗‖n
is applied in order to make sure that x∗ is not too far from x,
where the n could be 1, 2, ∞. Mathematically, suppose the



loss function of f is J(f(x), y), adversarial attack generating
x∗ by solving the following optimization problem1

argmaxx∗ J(f(x∗), y).
s.t. ‖x∗ − x‖∞ ≤ ε

(1)

In order to generate an adversarial example from a real exam-
ple x, fast gradient sign (FGSM) [2] use a one-step generation
algorithm in equation Eq. 2.

x∗ = x+ ε · sign(5xJ(f(x), y)). (2)

ε is the step size. FGSM assumes that the decision boundary
around the data point is linear and a small number of accumu-
lated movements away from the class will bring the sample
across the border.

In a semi-supervised scenario, we first use a small num-
ber of labeled samples, denoted as XL, and a big number of
unlabeled samples, denoted as XU , to train the classifier f .
When the classification accuracy of f on a separate testing
set XT reach to a satisfactory level (i.e. each classifier attains
at least 96% reported accuracy in the original paper), we fix
all the parameters of f and apply the FGSM attack approach
to it. More specifically, we perform a one-step perturbation
using equation Eq. 2 to all the testing samples in XT to ob-
tain a manipulated new testing set X ∗T , and then evaluate the
classification accuracy of f on X ∗T .

Four representative and widely used semi-supervised
learning algorithms are selected as the attack targets.

1. Mean Teacher [8]: The overall architecture of mean
teacher (MT) consists of two parts: student model and
teacher model. The network parameters of the teacher
model are obtained by the moving average of the net-
work parameters of the student model.

2. Smooth Neighborhood [13]: To take pair-wise relation-
ship of data points into account, smooth neighbors on
teacher graphs (SNTG) forces the predictions of neigh-
boring points to be the same. For non-neighboring
points, it pulls them farther than a predefined distance
m.

3. MixMatch [9]: The key of MixMatch is to effectively
fuse the ideas of pseudo label [14], consistency [15]
and mixup [16] together to make a ”holistic” approach.

4. FixMatch [10]: FixMatch further boosts MixMatch by
aligning the output of a strong perturbed version to a
weak perturbed version of an unlabeled sample x.

1One could also generate an adversarial which is quite different from
x and visually belong to another class,but the classifier output remains un-
changed, see [12].

2.2. A new adversarial attack method

In practice, a class boundary is often highly nonlinear in high-
dimensional space, so FGSM may have limited attack abil-
ity. Instead, the iterative FGSM (I-FGSM) [17] continuously
moves the adversarial example along the direction of the gra-
dient, as shown in the equation Eq. 3. Although it can achieve
a highly successful attack rate after several iterations, the ad-
versarial example can easily fall into a bad local maximum
and ”overfit” the model, which is less likely to migrate across
models, hence low transferability.

In this subsection, we propose a regularized update de-
scent [18] based algorithm to generate adversarial examples
to further improve the performance of FGSM and I-FGSM.

Suppose we adopt the gradient ascendant algorithm to
solve the optimization problem in equation Eq. 1. It results in
the following update

x∗t+1 = x∗t + αvt (3)

where vt = 5xJ(f(x∗t ), y) is the gradient of loss function J
at x∗t . Noting that the gradient vanishes for optimal solution
(i.e. vt = 0), the main idea of our adversarial attack algorithm
is to optimize simultaneously the target variable x∗ and the
gradient update vt. To be more specific, at tth iteration, the
original optimization problem in equation (1) is reformulated
as

J(x∗t , vt) ≡ J(x∗t + vt) + γt
v2t
2

(4)

where the last term γtv
2
t

2 is a regularization term to avoid over-
confident updates (γt is the regularization coefficient).

When an update vt at the current input x∗t is small enough,
using the second-order approximation we can get the follow-
ing equation:

J(x∗t + vt) = J(x∗t ) + vtJ
′ {x∗t }+

1

2
v2t J

′′ {x∗t }+O
{
v3t
}

(5)
Therefore, given the adversarial attack target classifier

f(x), its loss function J and an input sample image x, the
update rule of our novel attach algorithm is given by

ṽt+1 = µ · ṽt +
ṽt
||ṽt||1

x∗t+1 = x∗t + α · sign(ṽt+1)

(6)

where ṽt = 5xJ̃(x∗t , vt). αt is the learning rate and µt is
the decay rate at iteration t. The first equation is the accumu-
lated normalized momentum to stabilize gradient update. The
overall adversarial learning algorithm is in algorithm 1. More
theoretical analysis can be found in [19] and [20].

3. EXPERIMENTAL RESULTS

We first conduct experiments to evaluate the FGSM attack on
the selected semi-supervised learning neural networks. Then



Algorithm 1 RUD-FGSM
Require:

A classifier f with loss function J ,
A sample-label pair (x, y),
Perturbation parameter ε,
Iteration number T ,
Decay factor µ.

Ensure:
An adversarial example x∗ with ‖x∗ − x‖∞ ≤ ε;

1: α = ε
T , x

∗
0 = x;

2: for each t=0 to T − 1 do
3: Input x∗t to f and compute the gradient ṽt;
4: Update according to equation 6
5: end for
6: return x∗ = x∗T ;

we make comparisons of our proposed new attack algorithm
with other attack algorithms.

3.1. Attacking semi-supervised deep models using FGSM

We conduct experiments on the benchmark dataset CIFAR-
10 [21], which consists of 60000 colour images equally dis-
tributed in 10 classes, and is divided into 50000 training im-
ages and 10000 test images. To train the semi-supervised net-
works, we only evaluate model accuracies for different num-
ber of labeled samples: 250, 500, 1000, 2000, 4000. We train
the networks of each semi-supervised learning algorithm us-
ing the reported parameter settings and training strategies in
their original papers. In addition, to evaluate the sensitivity of
each semi-supervised model to different perturbation levels
(hence the adversarial attack strength), we change the param-
eter ε from 0.01 to 1. The larger the parameter is, the stronger
the sample is perturbed and the attack is. The experimental re-
sults are show in Table 1, which includes testing accuracies on
perturbed testing data. The baseline accuracies are shown in
Table 2, which includes testing accuracies on normal testing
data. The perturbed testing set is a duplication of the normal
testing set, except that each sample in it is poisoned by the
attack algorithm FGSM.

From these results, we can see that when ε is small (0.01),
the accuracy losses of all semi-supervised models are also
small and roughly the same for a different number of labeled
samples. As the value of ε goes large, the prediction accu-
racies decay very quickly. Particularly, for each, the more la-
beled samples are used for training, the quicker the accuracies
decrease. Noting that this phenomenon of semi-supervised
learning is very different from existing researches on super-
vised learning and, to the best of our knowledge, has not been
reported. In [11], the authors found that with more labeled
data, the robustness of a supervised learning model against
adversarial attack increases.

Method Labeled ε=0.01 ε=0.1 ε=0.5 ε=1.0

MT

250 70.32 69.15 66.13 57.60
500 75.32 68.26 59.07 50.31

1000 83.01 79.96 53.13 29.24
4000 89.73 80.21 45.52 25.71

SNTG

250 77.93 77.35 70.68 59.76
500 81.16 80.47 69.50 54.79

1000 84.45 83.43 56.43 30.62
4000 90.07 87.19 44.38 27.16

MM

250 88.48 88.24 84.06 70.78
500 89.30 88.11 77.84 61.07

1000 89.91 88.55 61.73 31.44
4000 92.73 91.38 62.41 29.38

FM

250 91.92 90.89 86.28 73.85
500 92.37 91.45 79.41 55.88

1000 93.21 92.14 67.69 33.78
4000 94.73 93.21 60.19 30.99

Table 1. Testing accuracies (in percent) when parameter ε of
FGSM attack algorithm changes. ”Labeled” means the total
number of labeled data for training.

Labeled
Method MT SNTG MM FM

250 70.33 77.94 88.49 91.93
500 75.34 81.17 89.32 92.40

1000 83.02 84.46 89.92 93.23
4000 89.76 90.09 92.74 94.75

Table 2. Testing accuracies (in percent) without adversarial
attack.

3.2. Comparisons of adversarial attack algorithms

In this experiment, FGSM[2], MI-FGSM[17], PGD[3],
CW[22] and our proposed adversarial attack algorithm RUD-
FGSM1 are compared to attack the selected semi-supervised
learning neural networks.

For FGSM, only one parameter ε, which means the per-
turbation’s absolute value, needs to be considered. For MI-
FGSM, the decay factor µ is set to be 1 as [17] suggests. For
RUD-FGSM, we set the parameter learning rate to α to 0.8
and the decay factor µ to 1. The iterations parameter T is set
to 20 after many attempts. We include two forms of CW, i.e.
CW(L2) and CW(L∞). They differs in the norm of perturba-
tion. The learning rate for both forms is 0.01. For PGD, the
attack step size is set to be 0.1 and the maximum number of
iterations is set to be 100, as suggested in the paper. We set
the same parameter ε = 0.3 for these algorithms. The results
are shown in Table 3.

The results show that by using iterative multi-step pertur-
bations for adversarial attack, MI-FGSM, RUF-FGSM, PGD,
CW(L2) and CW(L∞) attain considerably higher accuracy
decrease than the FGSM one-step perturbation. Note that the



SSL Method
Attack Method

”Clean” FGSM MI-FGSM PGD CW(L2) CW(L∞) RUD-FGSM

MixMatch 89.32 82.07 80.23 81.75 80.73 80.04 79.21
ReMixMatch 90.94 85.38 84.09 84.11 84.66 82.71 80.26

FixMatch 92.40 86.75 85.74 84.93 83.57 82.92 85.13
MT 75.34 69.66 67.32 66.84 65.42 64.99 64.71

MT+SNTG 81.17 72.40 69.18 69.35 67.12 69.86 66.55

Table 3. Testing accuracies (in percent) for different attack algorithms with only 500 labeled data for training. ”Clean” means
the version of testing set with no adversarial attack.

proposed RUF-FGSM achieves more decrease in most cases.
A reasonable explanation is that the algorithm uses higher-
order information than the momentum algorithm to look fur-
ther ahead and thus is able to converge faster and more steady
than other algorithms . Besides, to prove our algorithm also
works in fully supervised scenario, we conduct experiment on
MNIST dataset[23] in fullly supervised paradigm. The result
is shown in Table 4. The parameter is set to be the same in
Table 3. It can be seen that our proposed algorithm outper-
forms other algorithms, proving its effectiveness under full
supervised scenario.

Attack Method Accuracy
FGSM 57.28

MI-FGSM 44.60
PGD 49.55

CW(L2) 46.98
CW(L∞) 45.27

RUD-FGSM 42.13

Table 4. Testing accuracies (in percent) for different adver-
sarial attack on mnist dataset. The data is calculated by aver-
aging of 5 runs.

To further validate the capability of our new attack algo-
rithm, figure 1 shows the network classification results of the
original testing samples (a-c) and the attacked samples (d-f).
From these examples, we can see that the proposed attack al-
gorithm is able to generate highly cheating samples with very
small data perturbation (almost imperceptible to human eyes).
Thus, it is very helpful to study adversarial mechanisms and
to develop effective defense measures.

4. CONCLUSION

In this paper, we study the behavior of semi-supervised learn-
ing deep models to adversarial attacks. Complementary to
existing researches on supervised learning, we found that the
number of labeled data is reverse proportional to the robust-
ness of a semi-supervised learning model, especially for a
strong attack. We hypothesize that less labeled samples may
result in a less abrupt classification boundary so that the ad-
versarial movements have fewer effects on the network deci-

(a) desk 98.92% (b) ostrich 99.46% (c) bird 99.52%

(d) camera 99.13% (e) lemon 99.99% (f) cat 98.17%

Fig. 1. The original images classification outputs (a-c) and
their adversarial counterparts outputs (d-f) generated by the
proposed RUD-FGSM attack algorithm. The percentages are
network classification confidence.

sion. We leave this as our future work. We also propose a
new adversarial attack algorithm and demonstrate its validity
by comparing it with widely used FGSM and MI-FGSM.

Furthermore, based on the current evaluation of semi-
supervised learning models and our proposed effective attack
algorithm, it is imperative to develop more robust semi-
supervised learning approaches and defense techniques [24].
We will work on this in future research.
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